Theta lifts of Bianchi modular forms and applications to paramodularity

نویسندگان

  • Tobias Berger
  • Lassina Dembélé
  • Ariel Pacetti
  • Mehmet Haluk Sengün
چکیده

We explain how the work of Johnson-Leung and Roberts on lifting Hilbert modular forms for real quadratic fields to Siegel modular forms can be adapted to imaginary quadratic fields. For this, we use archimedean results from Harris, Soudry and Taylor and replace the global arguments of Roberts by the non-vanishing result of Takeda. As an application of our lifting result, we exhibit an abelian surface B defined over Q, which is not a restriction of scalars of an elliptic curve and satisfies the paramodularity Conjecture of Brumer and Kramer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Level Stripping for Siegel Modular Forms with Reducible Galois Representations

In this paper we consider level stripping for genus 2 cuspidal Siegel eigenforms. In particular, we show that it is possible to strip primes from the level of Saito-Kurokawa lifts that arise as theta lifts and weak endoscopic lifts with a mild condition on the associated character. The main ingredients into our results are a level stripping result for elliptic modular forms and the explicit nat...

متن کامل

Regularized Theta Lifts for Orthogonal Groups over Totally Real Fields

We define a regularized theta lift for orthogonal groups over totally real fields generalizing work of Borcherds. The lift takes harmonic ‘Whittaker forms’ to automorphic Green functions and weakly holomorphic Whittaker forms to meromorphic modular forms on orthogonal groups with zeros and poles supported on special divisors.

متن کامل

CM values of automorphic Green functions on orthogonal groups over totally real fields

Generalizing work of Gross–Zagier and Schofer on singular moduli, we study the CM values of regularized theta lifts of harmonic Whittaker forms. We compute the archimedian part of the height pairing of arithmetic special divisors and CM cycles on Shimura varieties associated to quadratic spaces over an arbitrary totally real base field. As a special case, we obtain an explicit formula for the n...

متن کامل

A theta operator on Picard modular forms modulo an inert prime

(an 2 1 Fp) of such a form, μ is given by qd=dq: It lifts, by the same formula, to the space of p-adic modular forms. This suggests a relation with the Tate twist of the mod p Galois representation attached to f; if the latter is a Hecke eigenform. Over C; this operator has been considered already by Ramanujan, where it fails to preserve modularity “by a multiple of E2": Maass modi...ed it so t...

متن کامل

Arithmetic Aspects of the Theta Correspondence and Periods of Modular Forms

We review some recent results on the arithmetic of the theta correspondence for certain symplectic-orthogonal dual pairs and some applications to periods and congruences of modular forms. We also propose an integral version of a conjecture on Petersson inner products of modular forms on quaternion algebras over totally real fields.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. London Math. Society

دوره 92  شماره 

صفحات  -

تاریخ انتشار 2015